The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A364057 Lexicographically earliest infinite sequence of positive integers such that every subsequence {a(j), a(j+k), a(j+2k)} (j, k >= 1) is unique. 3
1, 1, 1, 2, 3, 1, 2, 4, 5, 6, 7, 8, 5, 1, 2, 9, 3, 4, 6, 7, 1, 10, 11, 12, 13, 8, 14, 15, 16, 3, 17, 9, 18, 4, 7, 19, 5, 2, 11, 12, 20, 6, 1, 8, 21, 22, 9, 23, 24, 13, 14, 3, 10, 16, 17, 25, 26, 19, 27, 6, 28, 11, 15, 20, 22, 29, 12, 21, 16, 23, 30, 18, 31, 32 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
To find a(n), two criteria must be satisfied:
1. Every subsequence {a(n-2k), a(n-k) a(n)} created by a(n) must be unique.
2. a(n) cannot create the scenario where a future a(m) will create multiple {a(m-2k), a(m-k), a(m)} regardless of choice for a(m). The first time this is the sole reason a candidate is denied is at a(10), see Example below.
Will every subsequence of 3 positive integers appear in arithmetic progression in this sequence?
Will every positive integer occur infinitely many times?
For n >= 3, a(n) != a(n+1).
In the 74 initially published terms, numbers on average seem to reoccur at (very) roughly twice the index of their previous occurrence. This seems worthy of better quantification when further terms are established. - Peter Munn, Nov 03 2023
LINKS
Samuel Harkness, MATLAB program
Rémy Sigrist, C++ program
EXAMPLE
For a(9), we first try 1. If a(9) were 1, {a(3), a(6), a(9)} would be {1, 1, 1}, but this already occurred at {a(1), a(2), a(3)}.
Next, try 2. If a(9) were 2, {a(3), a(6), a(9)} would be {1, 1, 2}, but this already occurred at {a(2), a(3), a(4)}.
Next, try 3. If a(9) were 3, {a(3), a(6), a(9)} would be {1, 1, 3}, but this already occurred at {a(1), a(3), a(5)}.
Next, try 4. If a(9) were 4, {a(1), a(5), a(9)} would be {1, 3, 4}, but this already occurred at {a(2), a(5), a(8)}.
Then, try 5. New subsequences at indices {a(1), a(5), a(9)} = {1, 3, 5}, {a(3), a(6), a(9)} = {1, 1, 5}, {a(5), a(7), a(9)} = {3, 2, 5}, and {a(7), a(8), a(9)} = {2, 4, 5} are formed, none of which have occurred at any {a(j), a(j+k), a(j+2k)} (for any j and k) previously. No 5 has occurred previously, so criteria (2) in Comments must be satisfied. Thus a(9) = 5.
a(10) is the first time a candidate is denied solely because it would create a guaranteed future duplicate. Note that no subsequences prevent a(10) from being 4.
n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
a(n) = 1 1 1 2 3 1 2 4 5 [4] X
| | |
| | |
If a(10) were 4, {a(2), a(8), a(14)} = {a(6), a(10), a(14)} = {1, 4, X}, making a subsequence {a(j), a(j+k), a(j+2k)} which is not unique. Therefore a(10) != 4.
PROG
(MATLAB) See Links section.
(C++) See Links section.
CROSSREFS
Sequence in context: A166871 A360476 A275728 * A081536 A297497 A152736
KEYWORD
nonn
AUTHOR
Samuel Harkness, Oct 19 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 02:58 EDT 2024. Contains 372536 sequences. (Running on oeis4.)