login
A363358
E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x * A(x)^2)).
4
1, 1, 7, 91, 1809, 48521, 1643863, 67381875, 3243606817, 179405231761, 11213025902631, 781604862035339, 60120379931640625, 5058593367221610009, 462199816484860893559, 45574025454771003821731, 4823543138131670132557377, 545448517762149418525390625
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (2*n+1)^(k-1) * binomial(k,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (2*n+1)^(k-1)*binomial(k, n-k)/k!);
CROSSREFS
Cf. A361093.
Sequence in context: A361142 A326266 A367161 * A124557 A195213 A317370
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 17 2023
STATUS
approved