OFFSET
0,2
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 5 = Sum_{n=-oo..+oo} (-1)^n * x^n * (5*A(x) + x^(2*n-1))^(n+1).
(2) 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / (1 + 5*A(x)*x^(2*n+1))^(n-1).
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^n * (5*A(x) + x^(2*n-1))^n.
(4) A(x) = x / Sum_{n=-oo..+oo} (-1)^n * x^(3*n) * (5*A(x) + x^(2*n-1))^(n-1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n^2) / (1 + 5*A(x)*x^(2*n+1))^n.
a(n) = Sum_{k=0..floor(n/2)} A359670(n-k,n-2*k) * 5^(n-2*k) for n >= 0.
EXAMPLE
G.f.: A(x) = 1 + 5*x + 27*x^2 + 155*x^3 + 929*x^4 + 5730*x^5 + 36083*x^6 + 230935*x^7 + 1497739*x^8 + 9822060*x^9 + 65021849*x^10 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(1 - sum(m=-#A, #A, (-1)^m * x^m * (5*Ser(A) + x^(2*m-1))^(m+1) ), #A-1)/5); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 20 2023
STATUS
approved