login
A363008
Expansion of e.g.f. 1/(2 - exp(exp(exp(exp(x) - 1) - 1) - 1)).
3
1, 1, 6, 52, 594, 8444, 143783, 2854261, 64735570, 1651560175, 46814933977, 1459689346911, 49650414218071, 1829560770160335, 72603137881845927, 3086932915850946633, 139999909097319319787, 6746170002325663539844, 344199636595620793896784
OFFSET
0,3
LINKS
FORMULA
a(n) = T(n,4), T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = n!.
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, `if`(t=1, m!,
b(m, 0, t-1)), m*b(n-1, m, t)+b(n-1, m+1, t))
end:
a:= n-> b(n, 0, 4):
seq(a(n), n=0..20); # Alois P. Heinz, May 12 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(exp(exp(exp(x)-1)-1)-1))))
CROSSREFS
Row p=4 of A153278 (for n>=1).
Column k=4 of A363007.
Cf. A351427.
Sequence in context: A127133 A243249 A075756 * A217486 A144345 A294158
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 12 2023
STATUS
approved