login
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (2*j+1)^(n-j-1) / (j! * (n-2*j)!).
2

%I #13 Apr 22 2023 10:24:19

%S 1,1,1,1,1,1,1,1,2,1,1,1,3,10,1,1,1,4,19,70,1,1,1,5,28,169,646,1,1,1,

%T 6,37,298,2041,7576,1,1,1,7,46,457,4186,30811,106744,1,1,1,8,55,646,

%U 7081,74116,560827,1761628,1,1,1,9,64,865,10726,141901,1578340,11957905,33361948,1

%N Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (2*j+1)^(n-j-1) / (j! * (n-2*j)!).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^2/2 * A_k(x)^2).

%F A_k(x) = exp(x - LambertW(-k*x^2 * exp(2*x))/2).

%F A_k(x) = sqrt( -LambertW(-k*x^2 * exp(2*x))/(k*x^2) ) for k > 0.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 3, 4, 5, 6, ...

%e 1, 10, 19, 28, 37, 46, ...

%e 1, 70, 169, 298, 457, 646, ...

%e 1, 646, 2041, 4186, 7081, 10726, ...

%o (PARI) T(n, k) = n! * sum(j=0, n\2, (k/2)^j*(2*j+1)^(n-j-1)/(j!*(n-2*j)!));

%Y Columns k=0..3 give A000012, A362474, A143768, A362475.

%Y Cf. A362377, A362490.

%K nonn,tabl

%O 0,9

%A _Seiichi Manyama_, Apr 21 2023