login
A361869
Let x_0, x_1, x_2, ... be the iterations of the arithmetic derivative A003415 starting with x_0 = n. a(n) is the greatest k such that x_0 > x_1 > ... > x_k.
2
0, 1, 2, 2, 0, 2, 3, 2, 0, 4, 3, 2, 0, 2, 5, 1, 0, 2, 0, 2, 0, 4, 3, 2, 0, 4, 2, 0, 0, 2, 0, 2, 0, 6, 3, 1, 0, 2, 5, 1, 0, 2, 3, 2, 0, 2, 5, 2, 0, 6, 3, 1, 0, 2, 0, 1, 0, 4, 3, 2, 0, 2, 7, 2, 0, 1, 3, 2, 0, 3, 3, 2, 0, 2, 2, 2, 0, 1, 3, 2, 0, 0, 3, 2, 0, 4, 3, 1, 0, 2, 0, 1, 0, 4, 7, 1, 0, 2, 2, 3
OFFSET
0,3
COMMENTS
a(n) is the number of iterations of A003415 starting at n until the sequence of iterates stops decreasing.
a(n) = 0 if and only if A003415(n) >= n.
First differs from A099307 at n=15, where a(15) = 1 while A099307(15) = 0.
LINKS
EXAMPLE
a(5) = 2 because x_0 = 5 > x_1 = A003415(5) = 1 > x_2 = A003415(1) = 0, but x_3 = A003415(0) = 0.
a(6) = 3 because x_0 = 6 > x_1 = A003415(6) = 5 > ... > x_3 = 0 but x_4 = 0.
MAPLE
ader:= proc(n) local t;
n * add(t[2]/t[1], t = ifactors(n)[2])
end proc:
f:= proc(n) option remember; local t;
t:= ader(n);
if t < n then procname(t)+1 else 0 fi
end proc:
map(f, [$0..1000]);
CROSSREFS
Sequence in context: A362687 A341879 A099307 * A256750 A228430 A241533
KEYWORD
nonn
AUTHOR
Robert Israel, May 28 2023
STATUS
approved