login
A361359
Number of nonequivalent noncrossing caterpillars with n edges up to rotation.
4
1, 1, 1, 4, 11, 49, 196, 868, 3721, 16306, 70891, 309739, 1350831, 5897934, 25740386, 112368153, 490489041, 2141121271, 9346382981, 40799215354, 178097506051, 777437032059, 3393689486976, 14814237183658, 64667544141561, 282288713218896, 1232255125682671
OFFSET
0,4
COMMENTS
The number of all noncrossing caterpillars with n edges is given by A361356.
LINKS
FORMULA
G.f.: (1 - 5*x - 2*x^2 + 27*x^3 - 20*x^4 - 13*x^5 + 23*x^6 - 5*x^7 - 6*x^8 + 3*x^9)/((1 - x)*(1 - 5*x + 3*x^2 - x^3)*(1 - 5*x^2 + 3*x^4 - x^6)).
a(n) = 6*a(n-1) - 3*a(n-2) - 26*a(n-3) + 36*a(n-4) - 2*a(n-5) - 18*a(n-6) + 6*a(n-7) + 5*a(n-8) - 4*a(n-9) + a(n-10) for n >= 10.
PROG
(PARI)
G(x)={ my(f = x*(2 - x)/(1 - 5*x + 3*x^2 - x^3), g = 1 + x + x^2*(3 - 2*x + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); (intformal(g) - 3)/x + x*subst((1 + 2*x*f)/(1-x)^2, x, x^2)/2 }
{ Vec(G(x) + O(x^30)) }
CROSSREFS
Cf. A296532 (noncrossing trees), A361356, A361358, A361360 (up to rotation and reflection).
Sequence in context: A149310 A149311 A212086 * A296532 A149312 A149313
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, Mar 09 2023
STATUS
approved