OFFSET
1,2
COMMENTS
A dominating induced tree in a graph is an acyclic connected induced subgraph whose vertices are a dominating set.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..435 (first 29 antidiagonals)
Eric Weisstein's World of Mathematics, Grid Graph.
FORMULA
T(n,m) = T(m,n).
EXAMPLE
Table starts:
=======================================================
m\n| 1 2 3 4 5 6 7 ...
---+---------------------------------------------------
1 | 1 3 4 4 4 4 4 ...
2 | 3 8 17 32 66 130 262 ...
3 | 4 17 65 222 766 2685 9450 ...
4 | 4 32 222 1280 7629 46032 278419 ...
5 | 4 66 766 7629 78981 820308 8520021 ...
6 | 4 130 2685 46032 820308 14605388 259809527 ...
7 | 4 262 9450 278419 8520021 259809527 7904828158 ...
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 23 2023
STATUS
approved