%I #8 Feb 22 2023 10:20:15
%S 1,0,1,2,4,10,30,98,338,1240,4877,20496,91213,426678,2090081,10702438,
%T 57193760,318283388,1840036058,11026424446,68370955450,438039068726,
%U 2896018310881,19733372875632,138418266287689,998363508783924,7396739279819185,56239695790595786
%N Expansion of Sum_{k>=0} x^(2*k) / (1 - k*x)^(k+1).
%F a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k) * binomial(n-k,k).
%o (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/(1-k*x)^(k+1)))
%o (PARI) a(n) = sum(k=0, n\2, k^(n-2*k)*binomial(n-k, k));
%Y Cf. A360708.
%K nonn
%O 0,4
%A _Seiichi Manyama_, Feb 21 2023