login
A360586
Expansion of e.g.f.: exp(x)*(exp(x)-1)*(exp(x)-x).
1
0, 1, 3, 10, 37, 136, 479, 1618, 5289, 16876, 52915, 163846, 502781, 1532896, 4651911, 14070394, 42456913, 127894996, 384799067, 1156756462, 3475250085, 10436235976, 31330727983, 94038321250, 282211432697, 846835624636, 2540926304259, 7623651327958
OFFSET
0,3
COMMENTS
a(n) is the number of ordered set partitions of an n-set into 3 sets such that the first set has at least one element, the second set cannot have a single element, and the third set has no restrictions.
FORMULA
a(n) = 3^n - 2^n - n*2^(n-1) + n.
EXAMPLE
The 37 set partitions for n=4 are the following:
{1,2,3,4}, {}, {} (1 of these);
{1,2,3}, {}, {4} (4 of this type);
{1,2}, {}, {3,4} (6 of this type);
{1,2}, {3,4}, {} (6 of this type);
{1}, {2,3}, {4} (12 of this type);
{1}, {2,3,4}, {} (4 of this type);
{1}, {}, {2,3,4} (4 of this type).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x](Exp[x]-1)(Exp[x]-x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Apr 02 2023 *)
CROSSREFS
Sequence in context: A138807 A149043 A296000 * A242725 A151315 A164048
KEYWORD
nonn
AUTHOR
Enrique Navarrete, Feb 12 2023
STATUS
approved