login
A360387
a(1) = 1, and for n > 1, a(n) is the number of ways that a(1..n-1) can be divided into contiguous subsequences of equal sum.
1
1, 1, 2, 2, 2, 3, 1, 3, 1, 3, 1, 2, 2, 4, 2, 2, 4, 3, 1, 4, 3, 1, 6, 1, 1, 3, 1, 4, 4, 1, 1, 1, 1, 5, 1, 2, 5, 1, 1, 1, 3, 1, 1, 1, 2, 6, 1, 1, 2, 1, 1, 3, 1, 4, 1, 2, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 1, 2, 2, 7, 1, 2, 2, 3, 1, 6, 1, 1, 4, 2, 2, 4, 3, 1, 3, 1, 2
OFFSET
1,3
COMMENTS
No divisions counts as 1 way of dividing the sequence.
Is the sequence unbounded?
LINKS
EXAMPLE
Initial terms with corresponding divisions (starting with single subsequence, then more):
n a(n) Ways of dividing (subsequences separated by "|")
- ---- ------------------------------------------------
1 1
2 1 [1]
3 2 [1,1]; [1|1]
4 2 [1,1,2]; [1,1|2]
5 2 [1,1,2,2]; [1,1|2|2]
6 3 [1,1,2,2,2]; [1,1,2|2,2]; [1,1|2|2|2]
7 1 [1,1,2,2,2,3]
8 3 [1,1,2,2,2,3,1]; [1,1,2,2|2,3,1]; [1,1,2|2,2|3,1]
9 1 [1,1,2,2,2,3,1,3]
10 3 [1,1,2,2,2,3,1,3,1]; [1,1,2,2,2|3,1,3,1]; [1,1,2|2,2|3,1|3,1]
PROG
(PARI) { m = s = 0; v = 1; for (n=1, 87, print1 (v", "); m += 2^s+=v; v = 0; fordiv (s, d, t = sum(i=1, d, 2^(i*s/d)); if (bitand(m, t)==t, v++))) } \\ Rémy Sigrist, Feb 09 2023
CROSSREFS
Cf. A308746.
Sequence in context: A227738 A103960 A242626 * A306399 A376076 A240689
KEYWORD
nonn
AUTHOR
Neal Gersh Tolunsky, Feb 05 2023
STATUS
approved