login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359687
Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 5.
0
489489, 525698, 526535, 763002, 903210, 1423214
OFFSET
1,1
FORMULA
A060838(a(n)) = 5.
PROG
(PARI) is(n)=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<489489, return(0)); if(mwr[1]>5 || mwr[2]<5, return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(0)); for(effort=1, 99, mwr=ellrank(eri, effort); if(mwr[1]>5 || mwr[2]<5, return(0), mwr[1]==5 && mwr[2]==5, return(1))); Str("unknown; ", ar==5, " under BSD conjecture") \\ Charles R Greathouse IV, Jan 25 2023
CROSSREFS
Subsequence of A159843.
Cf. A060748, A060838, A309960 (rank 0), A309961 (rank 1), A309962 (rank 2), A309963 (rank 3), A309964 (rank 4).
Sequence in context: A022215 A335083 A252847 * A251972 A034629 A109914
KEYWORD
nonn,more
AUTHOR
Maksym Voznyy and Charles R Greathouse IV, Jan 25 2023
STATUS
approved