The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A359363 Triangle read by rows. The coefficients of the Baxter polynomials p(0, x) = 1 and p(n, x) = x*hypergeom([-1 - n, -n, 1 - n], [2, 3], -x) for n >= 1. 6

%I #36 Jan 04 2024 08:57:55

%S 1,0,1,0,1,1,0,1,4,1,0,1,10,10,1,0,1,20,50,20,1,0,1,35,175,175,35,1,0,

%T 1,56,490,980,490,56,1,0,1,84,1176,4116,4116,1176,84,1,0,1,120,2520,

%U 14112,24696,14112,2520,120,1,0,1,165,4950,41580,116424,116424,41580,4950,165,1

%N Triangle read by rows. The coefficients of the Baxter polynomials p(0, x) = 1 and p(n, x) = x*hypergeom([-1 - n, -n, 1 - n], [2, 3], -x) for n >= 1.

%C This triangle is a member of a family of Pascal-like triangles. Let T(n, k, m) = sf(m)*F(n - 1) / (F(k - 1)*F(n - k)) if k > 0 and otherwise k^n, where F(n) = Product_{j=0..m} (n + j)! and sf(m) are the superfactorials A000178. The case m = 2 gives this triangle, some other cases are given in the crossreferences. See also A342889 for a related representation of generalized binomial coefficients.

%F T(n, k) = [x^k] p(n, x).

%F T(n, k) = 2*F(n-1)/(F(k-1)*F(n-k)) for k > 0 where F(n) = n!*(n+1)!*(n+2)!.

%F p(n, 1) = A001181(n), i.e. the Baxter numbers are the values of the Baxter polynomials at x = 1.

%F (-1)^(n + 1)*p(2*n + 1, -1) = A217800(n) .

%e Triangle T(n, k) starts:

%e [0] 1

%e [1] 0, 1

%e [2] 0, 1, 1

%e [3] 0, 1, 4, 1

%e [4] 0, 1, 10, 10, 1

%e [5] 0, 1, 20, 50, 20, 1

%e [6] 0, 1, 35, 175, 175, 35, 1

%e [7] 0, 1, 56, 490, 980, 490, 56, 1

%e [8] 0, 1, 84, 1176, 4116, 4116, 1176, 84, 1

%e [9] 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1

%e .

%e Let p = (p1, p2,..., pn) denote a permutation of {1, 2,..., n}. The pair (p(i), p(i+1)) is a 'rise' if p(i) < p(i+1). Additionally a conventional rise is counted at the beginning of p.

%e T(n, k) is the number of Baxter permutations of {1,2,...,n} with k rises. For example for n = 4, [T(n, k) for k = 0..n] = [0, 1, 10, 10, 1]. The permutations, with preceding number of rises, are:

%e .

%e 1 [4, 3, 2, 1], 3 [2, 3, 4, 1], 2 [3, 4, 2, 1], 3 [2, 3, 1, 4],

%e 2 [3, 2, 4, 1], 3 [2, 1, 3, 4], 2 [3, 2, 1, 4], 3 [1, 3, 4, 2],

%e 2 [2, 4, 3, 1], 3 [1, 3, 2, 4], 2 [4, 2, 3, 1], 3 [3, 4, 1, 2],

%e 2 [2, 1, 4, 3], 3 [3, 1, 2, 4], 2 [4, 2, 1, 3], 3 [1, 2, 4, 3],

%e 2 [1, 4, 3, 2], 3 [1, 4, 2, 3], 2 [4, 1, 3, 2], 3 [4, 1, 2, 3],

%e 2 [4, 3, 1, 2], 4 [1, 2, 3, 4].

%p p := (n, x) -> ifelse(n = 0, 1, x*hypergeom([-1-n, -n, 1-n], [2, 3], -x)):

%p seq(seq(coeff(simplify(p(n, x)), x, k), k = 0..n), n = 0..10);

%p # Alternative:

%p T := proc(n, k) local F; F := n -> n!*(n+1)!*(n+2)!;

%p ifelse(k = 0, k^n, 2*F(n-1)/(F(k-1)*F(n-k))) end:

%p for n from 0 to 9 do seq(T(n, k), k = 0..n) od;

%o (PARI) C=binomial;

%o T(n, k) = if(n==0 && k==0, 1, ( C(n+1,k-1) * C(n+1,k) * C(n+1,k+1) ) / ( C(n+1,1) * C(n+1,2) ) );

%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print());

%o \\ _Joerg Arndt_, Jan 04 2024

%o (SageMath)

%o def A359363(n):

%o if n == 0: return SR(1)

%o h = x*hypergeometric([-1 - n, -n, 1 - n], [2, 3], -x)

%o return h.series(x, n + 1).polynomial(SR)

%o for n in range(10): print(A359363(n).list())

%o def PolyA359363(n, t): return Integer(A359363(n)(x=t).n())

%o # _Peter Luschny_, Jan 04 2024

%o (Python)

%o from functools import cache

%o from math import factorial

%o @cache

%o def A359363Row(n: int) -> list[int]:

%o @cache

%o def F(n: int): return factorial(n) ** 3 * ((n+1) * (n+1) * (n+2))

%o if n == 0: return [1]

%o return [0] + [(2*F(n-1))//(F(k-1) * F(n-k)) for k in range(1, n+1)]

%o for n in range(0, 10): print(A359363Row(n))

%o # _Peter Luschny_, Jan 04 2024

%Y Special cases of the general formula: A097805 (m = 0), (0,1)-Pascal triangle; A090181 (m = 1), triangle of Narayana; this triangle (m = 2); A056940 (m = 3), with 1,0,0...; A056941 (m = 4), with 1,0,0...; A142465 (m = 5), with 1,0,0....

%Y Variant: A056939. Diagonals: A000292, A006542, A047819.

%Y Cf. A000178, A001181, A046996, A217800, A342889.

%K nonn,tabl

%O 0,9

%A _Peter Luschny_, Dec 28 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 01:45 EDT 2024. Contains 372572 sequences. (Running on oeis4.)