login
A359085
Odd numbers k such that A246601(k) > 2*k.
2
4095, 16777215, 33550335, 67096575, 134189055, 268374015, 536743935, 1073483775, 2146963455, 4293922815, 8587841535, 17175678975, 34351353855, 68702703615, 68719476735, 137405403135, 137422176255, 137438949375, 274810802175, 274827575295, 274844348415, 274877894655
OFFSET
1,1
COMMENTS
These are the odd terms of A359084 and also its primitive terms, since if m is a term then m*2^k is a term of A359084 for all k >= 0.
The least term that is not divisible by 4095 is a(29) = 1099511627775 = 2^40 - 1.
MATHEMATICA
s[n_] := DivisorSum[n, # &, BitAnd[n, #] == # &]; Select[Range[1, 2^24, 2], s[#] > 2*# &]
PROG
(PARI) is(n) = n%2 && sumdiv(n, d, d * (bitor(n, d) == n)) > 2*n;
CROSSREFS
Cf. A246601.
Subsequence of A005101, A005231 and A359084.
Sequence in context: A161004 A022194 A069387 * A069413 A069439 A212935
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Dec 15 2022
STATUS
approved