OFFSET
1,3
COMMENTS
LINKS
Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO] (2023).
FORMULA
a(2*n) = Sum_{k=0..n-1} binomial(2*n,k) binomial(2*n-1-k, n-1-k).
a(2*n+1) = (Sum_{k=0..n} binomial(2*n+1,k) binomial(2*n-k, n-k)) - binomial(2*n-1, n).
a(n) = A240721((n-2)/2) if n-1 is odd and otherwise A178792((n-1)/2) - binomial(2*n - 1, n). - Peter Luschny, Jan 03 2023
EXAMPLE
For n = 3, the a(3) = 4 admissible pinnacle sets in S_3^D are {}, {1}, {2}, {3}.
MAPLE
a := n -> if irem(n - 1, 2) = 1 then binomial(n, n/2 - 1)*hypergeom([n/2 + 1, -n/2 + 1], [n/2 + 2], -1) else binomial(n + 1, n/2 + 1/2)*hypergeom([n/2 + 1/2, -n/2 + 1/2], [n/2 + 3/2], -1)/2 - binomial(n - 2, n/2 - 1/2) fi:
seq(simplify(a(n)), n = 3..31); # Peter Luschny, Jan 03 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Bridget Tenner, Dec 15 2022
STATUS
approved