login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358689
Emirps p such that 2*p - reverse(p) is also an emirp.
2
941, 1031, 1201, 1471, 7523, 7673, 7687, 9133, 9293, 9479, 9491, 9601, 9781, 9923, 10091, 10711, 12071, 14891, 15511, 17491, 17681, 18671, 32633, 33623, 34963, 35983, 36943, 36973, 37963, 39157, 70913, 72253, 72337, 72353, 73327, 74093, 75223, 75577, 75833, 75913, 77263, 77557, 79393, 79973
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 1201 is a term because it is an emirp, i.e., 1201 and its reverse 1021 are distinct primes, and 2*1201 - 1021 = 1381 is also an emirp.
MAPLE
rev:= proc(n) local L, t;
L:= convert(n, base, 10);
add(L[-t]*10^(t-1), t=1..nops(L));
end proc:
filter:= proc(n) local r, s, t;
if not isprime(n) then return false fi;
r:= rev(n);
if r = n or not isprime(r) then return false fi;
s:= 2*n-r;
if not isprime(s) then return false fi;
t:= rev(s);
t <> s and isprime(t)
end proc:
select(filter, [seq(i, i=3..100000, 2)]);
MATHEMATICA
emirpQ[n_] := ! PalindromeQ[n] && AllTrue[{n, IntegerReverse[n]}, PrimeQ]; q[n_] := emirpQ[n] && (d = 2*n - IntegerReverse[n]) > 0 && AllTrue[{d, IntegerReverse[d]}, emirpQ]; Select[Range[80000], q] (* Amiram Eldar, Dec 08 2022 *)
CROSSREFS
Cf. A006567.
Sequence in context: A259641 A200428 A104917 * A052238 A158718 A104302
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Dec 08 2022
STATUS
approved