login
a(n) = n * Sum_{d|n} (d + n/d - 2)!/d!.
3

%I #17 Nov 13 2022 10:36:18

%S 1,3,7,29,121,745,5041,40425,362917,3629411,39916801,479006233,

%T 6227020801,87178326495,1307674369891,20922790211057,355687428096001,

%U 6402373709009185,121645100408832001,2432902008212933061,51090942171709581289,1124000727778046764823

%N a(n) = n * Sum_{d|n} (d + n/d - 2)!/d!.

%H Michael De Vlieger, <a href="/A358389/b358389.txt">Table of n, a(n) for n = 1..449</a>

%F G.f.: Sum_{k>0} k! * (x/(1 - x^k))^k.

%F If p is prime, a(p) = 1 + p!.

%t Table[n*DivisorSum[n, ((# + n/# - 2)!)/(#!) &], {n, 22}] (* _Michael De Vlieger_, Nov 13 2022 *)

%o (PARI) a(n) = n*sumdiv(n, d, (d+n/d-2)!/d!);

%o (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*(x/(1-x^k))^k))

%Y Cf. A038507, A343573.

%K nonn,easy

%O 1,2

%A _Seiichi Manyama_, Nov 13 2022