login
A358322
Interlopers in sexy prime quadruples.
1
7, 13, 19, 43, 71, 617, 643, 1093, 1483, 1489, 1609, 1871, 1877, 2381, 2687, 3919, 4003, 5441, 5651, 5657, 9463, 11831, 12109, 14629, 20357, 21491, 24107, 26683, 26713, 32059, 37571, 41957, 42407, 44533, 50591, 55217, 65717, 68899, 70001, 79813, 87557, 88811, 88817, 103993, 110923, 112573, 122029
OFFSET
1,1
COMMENTS
Primes q !== p (mod 6) such that p < q < p+18, where (p, p+6, p+12, p+18) is a "sexy" prime quadruple, i.e., p is in A023271.
LINKS
EXAMPLE
a(5) = 71 is a term because it is a prime !== 61 (mod 6) with 61 < 71 < 79, where (61, 67, 73, 79) is a sexy prime quadruple.
MAPLE
Res:= 7: count:= 1:
for p from 11 by 10 while count < 100 do
if andmap(isprime, [p, p+6, p+12, p+18]) then
R:= select(isprime, [p+2, p+8, p+10, p+16]);
count:= count + nops(R);
Res:= Res, op(R);
fi
od:
Res;
CROSSREFS
Cf. A023271.
Sequence in context: A005471 A249381 A040096 * A181938 A073648 A298737
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 09 2022
STATUS
approved