login
A358299
Triangle read by antidiagonals: T(n,k) (n>=0, 0 <= k <= n) = number of lines defining the Farey diagram of order (n,k).
1
2, 3, 6, 4, 11, 20, 6, 19, 36, 60, 8, 29, 52, 88, 124, 12, 43, 78, 128, 180, 252, 14, 57, 100, 162, 224, 316, 388, 20, 77, 136, 216, 298, 412, 508, 652, 24, 97, 166, 266, 360, 498, 608, 780, 924, 30, 121, 210, 326, 444, 608, 738, 940, 1116, 1332, 34, 145, 246, 386, 518, 706, 852, 1086, 1280, 1532, 1748
OFFSET
0,1
LINKS
Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures, Applicable Analysis and Discrete Mathematics, 9 (2015), 73-84; doi:10.2298/AADM150219008K. See Theorem 1, |DF(m,n)|.
EXAMPLE
The full array T(n,k), n >= 0, k>= 0, begins:
2, 3, 4, 6, 8, 12, 14, 20, 24, 30, 34, 44, 48, 60, ...
3, 6, 11, 19, 29, 43, 57, 77, 97, 121, 145, 177, 205, ...
4, 11, 20, 36, 52, 78, 100, 136, 166, 210, 246, 302, ...
6, 19, 36, 60, 88, 128, 162, 216, 266, 326, 386, 468, ...
8, 29, 52, 88, 124, 180, 224, 298, 360, 444, 518, 628, ...
12, 43, 78, 128, 180, 252, 316, 412, 498, 608, 706, ...
14, 57, 100, 162, 224, 316, 388, 508, 608, 738, 852, ...
...
MAPLE
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
Amn:=proc(m, n) local a, i, j; # A331781 or equally A333295. Diagonal is A018805.
a:=0; for i from 1 to m do for j from 1 to n do
if igcd(i, j)=1 then a:=a+1; fi; od: od: a; end;
# The present sequence is:
Dmn:=proc(m, n) local d, t1, u, v, a; global A005728, Amn;
a:=A005728(m)+A005728(n);
t1:=0; for u from 1 to m do for v from 1 to n do
d:=igcd(u, v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
a+2*t1-2*Amn(m, n); end;
for m from 1 to 8 do lprint([seq(Dmn(m, n), n=1..20)]); od:
CROSSREFS
The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.
Sequence in context: A049449 A351378 A104663 * A246429 A305325 A302848
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved