login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356740
a(n) is the least emirp that begins a sequence of exactly n emirps under the map p -> (p*R(p)) mod (p+R(p)), where R(p) is the digit reversal of p.
1
13, 389, 15013, 7149589, 1471573153
OFFSET
1,1
EXAMPLE
a(3) = 15013 because it is an emirp, so is (15013 * 31051) mod (15013+31051) = 983, and so is (983 * 389) mod (983 + 389) = 971, but not (971 * 179) mod (971 + 179), and this is the first emirp that works.
MAPLE
rev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
F:= proc(p) option remember; local k, q, r, s;
if not isprime(p) then return 0 fi;
q:= rev(p);
if q=p or not isprime(q) then return 0 fi;
r:= (p*q) mod (p+q);
1+procname(r);
end proc:
V:= Vector(4): count:= 0:
for p from 13 by 2 while count < 4 do
v:= F(p);
if v > 0 and V[v] = 0 then V[v]:= p; count:= count+1; fi;
od:
convert(V, list);
PROG
(PARI)
R(p)=fromdigits(Vecrev(digits(p)))
f(p)=my(r=R(p)); (p*r)%(p+r)
is(p)=my(r=R(p)); isprime(p)&&p!=r&&isprime(r)
card(x)=my(c=is(x), u=[]); while(is(x)&&is(f(x)), c++; u=concat(u, x); if(vecsearch(vecsort(u), f(x))==0, u=concat(u, f(x)); x=f(x), c--; break)); c
a(n)=forprime(k=2, +oo, if(card(k)==n, return(k))) \\ Jean-Marc Rebert, Sep 09 2022
CROSSREFS
KEYWORD
nonn,base,more,less
AUTHOR
J. M. Bergot and Robert Israel, Sep 04 2022
EXTENSIONS
a(5) from Jean-Marc Rebert, Sep 08 2022
STATUS
approved