login
A356082
Matula-Goebel number of the complete binary tree of n levels.
2
1, 4, 49, 51529, 400034745289, 135016053798647886015597889
OFFSET
1,2
COMMENTS
An estimate for a(7) is 7.304058*10^55. - Hugo Pfoertner, Jul 26 2022
FORMULA
a(n) = prime(a(n-1))^2, for n>=2.
EXAMPLE
For n=3, the complete binary tree of 3 levels is
49
/ \ a(3) = prime(4)^2
4 4 = 49
/ \ / \
1 1 1 1
PROG
(PARI) a(n) = my(ret=1); for(i=2, n, ret=prime(ret)^2); ret;
CROSSREFS
Cf. A006894 (Colijn-Plazzotta), A084107 (balanced binary).
Cf. A356083 (ternary), A356084 (quaternary).
Sequence in context: A087588 A027533 A048559 * A319139 A254543 A321590
KEYWORD
nonn,more
AUTHOR
Kevin Ryde, Jul 26 2022
EXTENSIONS
a(6) from Rémy Sigrist, Jul 26 2022
STATUS
approved