login
a(n) = Sum_{k=1..n} binomial(n,k) * sigma_3(k).
1

%I #14 Feb 16 2025 08:34:03

%S 1,11,58,243,866,2804,8485,24387,67333,180086,469338,1196976,2996956,

%T 7385837,17954243,43125267,102494548,241309031,563341508,1305142418,

%U 3002938045,6866090880,15609292379,35299794600,79443050541,177989130174,397124963671,882642816697,1954708794400

%N a(n) = Sum_{k=1..n} binomial(n,k) * sigma_3(k).

%C For m>0, Sum_{k=1..n} binomial(n,k) * sigma_m(k) ~ zeta(m+1) * n^m * 2^(n-m).

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorFunction.html">Divisor Function</a>.

%F a(n) ~ Pi^4 * n^3 * 2^(n-4) / 45.

%F a(n) = Sum_{i=1..n} Sum_{j=1..n} (i^3)*binomial(n,i*j). - _Ridouane Oudra_, Oct 31 2022

%p with(numtheory): seq(add(sigma[3](i)*binomial(n,i), i=1..n), n=1..60); # _Ridouane Oudra_, Oct 31 2022

%t Table[Sum[Binomial[n, k] * DivisorSigma[3, k], {k, 1, n}], {n, 1, 40}]

%o (PARI) a(n) = sum(k=1, n, binomial(n,k) * sigma(k, 3)); \\ _Michel Marcus_, Jul 24 2022

%Y Cf. A001158, A160399, A185003, A356038.

%Y Cf. A006218, A024916, A064602, A064603.

%K nonn,changed

%O 1,2

%A _Vaclav Kotesovec_, Jul 24 2022