login
A355131
E.g.f. A(x) satisfies A(x) = 1 + 2 * (exp(x) - 1) * A(2 * (exp(x) - 1)).
2
1, 2, 18, 482, 33554, 5688162, 2266828306, 2077710037986, 4312607047919378, 20026622857699101794, 205970083615742633015314, 4651396041100180736449396962, 228932014511191529094605862938898, 24398187888144654481778017293891600738
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies: A(log(1+x)) = 1 + 2*x*A(2*x).
a(0) = 1; a(n) = Sum_{k=1..n} k * 2^k * Stirling2(n,k) * a(k-1).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*2^j*stirling(i, j, 2)*v[j])); v;
CROSSREFS
Sequence in context: A306655 A156907 A053916 * A355134 A277037 A015203
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 20 2022
STATUS
approved