login
A354865
a(n) is the hafnian of the 2n X 2n symmetric matrix whose element M_{i,j} equals phi(abs(i-j)).
0
1, 1, 4, 49, 1193, 50228, 3098989, 271913937, 31382686354, 4668707087571, 880702869805775
OFFSET
0,3
EXAMPLE
a(2) = M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 4 is the hafnian of
0, 1, 1, 2;
1, 0, 1, 1;
1, 1, 0, 1;
2, 1, 1, 0.
MATHEMATICA
M[i_, j_, n_]:=Part[Part[Table[EulerPhi[Abs[r-c]], {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
PROG
(PARI) aphi(n) = n=abs(n); if(n>0, eulerphi(n), 0);
tm(n) = matrix(n, n, i, j, aphi(i-j));
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
CROSSREFS
Cf. A071083 (determinant of M(n)), A085510 (permanent of M(n)).
Sequence in context: A121275 A329328 A188682 * A191301 A336805 A029991
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Sep 30 2022
EXTENSIONS
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 14 2023
STATUS
approved