login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354865
a(n) is the hafnian of the 2n X 2n symmetric matrix whose element M_{i,j} equals phi(abs(i-j)).
0
1, 1, 4, 49, 1193, 50228, 3098989, 271913937, 31382686354, 4668707087571, 880702869805775
OFFSET
0,3
EXAMPLE
a(2) = M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 4 is the hafnian of
0, 1, 1, 2;
1, 0, 1, 1;
1, 1, 0, 1;
2, 1, 1, 0.
MATHEMATICA
M[i_, j_, n_]:=Part[Part[Table[EulerPhi[Abs[r-c]], {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
PROG
(PARI) aphi(n) = n=abs(n); if(n>0, eulerphi(n), 0);
tm(n) = matrix(n, n, i, j, aphi(i-j));
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
CROSSREFS
Cf. A071083 (determinant of M(n)), A085510 (permanent of M(n)).
Sequence in context: A121275 A329328 A188682 * A191301 A336805 A029991
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Sep 30 2022
EXTENSIONS
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 14 2023
STATUS
approved