login
A353437
Integers m such that the decimal expansion of 1/m contains the digit 1.
7
1, 6, 7, 8, 9, 10, 14, 17, 19, 21, 23, 24, 26, 28, 29, 31, 32, 34, 35, 38, 39, 43, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
OFFSET
1,2
COMMENTS
If m is a term, 10*m is also a term, so terms with no trailing zeros are all primitive terms.
EXAMPLE
m = 7 is a term since 1/7 = 0.142857142857... (here, 1 is the smallest digit).
m = 17 is a term since 1/17 = 0.05882352941176470588235294117647...
m = 99 is a term since 1/99 = 0.0101010101... (here, 1 is the largest digit).
MATHEMATICA
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 125, MemberQ[f@#, 1] &]
CROSSREFS
A333402 (largest digit=1) and A352155 (smallest digit=1) are subsequences.
Similar with digit k: A352154 (k=0), this sequence (k=1), A353438 (k=2), A353439 (k=3), A353440 (k=4), A353441 (k=5), A353442 (k=6), A353443 (k=7), A353444 (k=8), A333237 (k=9).
Sequence in context: A067901 A115840 A371565 * A352155 A058368 A321852
KEYWORD
base,nonn
AUTHOR
STATUS
approved