login
Number of Condorcet voting profiles with three candidates and 2n-1 voters where all the choices are from {123, 231, 312}.
1

%I #18 May 20 2022 02:47:35

%S 0,6,90,1050,11130,112266,1099098,10550826,99899514,936435786,

%T 8711707290,80572452714,741766408890,6803700252810,62219207836890,

%U 567597206875050,5167463468534010,46965976868507850,426262280218695450,3864157168469020650,34994228358927126330

%N Number of Condorcet voting profiles with three candidates and 2n-1 voters where all the choices are from {123, 231, 312}.

%C All terms are multiples of 6.

%H Shalosh B. Ekhad, <a href="https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCondorcet3d.txt">More terms</a>.

%H Rebecca Embar and Doron Zeilberger, <a href="https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/cond3.pdf">Counting Condorcet</a>.

%F a(n) = ((17*n-21)*a(n-1)-(72*n-108)*a(n-2))/(n-1), with a(1) = 0, a(2) = 6.

%t Table[FullSimplify[3^(2*n - 1) - 2^(n-1) * Binomial[2*n, n] * Hypergeometric2F1[1, n + 1/2, n + 1, 8/9]/3], {n, 1, 25}] (* _Vaclav Kotesovec_, May 20 2022 *)

%Y Cf. A353194.

%K nonn

%O 1,2

%A _Rebecca Embar_, May 01 2022