login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352590
Number of tilings of a 4 X n rectangle using 2 X 2 and 1 X 1 tiles and dominoes.
2
1, 5, 90, 1125, 15623, 210690, 2865581, 38879777, 527889422, 7165926641, 97281018915, 1320614646178, 17927775213129, 243375024977525, 3303891838175262, 44851355548842869, 608871075513683799, 8265613771134660506, 112208272012556064101, 1523262112532452904985
OFFSET
0,2
COMMENTS
The sequence is based on A352589.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,50,-189,-289,1164,-408,-1010,576,216,-120).
FORMULA
G.f.: (1-6*x-15*x^2+74*x^3-18*x^4-122*x^5+64*x^6+48*x^7-24*x^8) / (1-11*x-50*x^2+189*x^3+289*x^4-1164*x^5+408*x^6+1010*x^7-576*x^8-216*x^9+120*x^10).
Recurrence: a(n)=11*a(n-1) + 50*a(n-2) - 189*a(n-3) - 289*a(n-4) + 1164*a(n-5) - 408*a(n-6) - 1010*a(n-7) + 576*a(n-8) + 216*a(n-9) - 120*a(n-10).
MATHEMATICA
CoefficientList[Series[(1-6x-15x^2+74x^3-18x^4-122x^5+64x^6+48x^7-24x^8)/(1-11x-50x^2+189x^3+289x^4-1164x^5+408x^6+1010x^7-576x^8-216x^9+120x^10), {x, 0, 20}], x] (* or *) LinearRecurrence[{11, 50, -189, -289, 1164, -408, -1010, 576, 216, -120}, {1, 5, 90, 1125, 15623, 210690, 2865581, 38879777, 527889422, 7165926641}, 30] (* Harvey P. Dale, Feb 27 2023 *)
CROSSREFS
Sequence in context: A300767 A300637 A301359 * A037297 A277303 A361551
KEYWORD
nonn,easy
AUTHOR
Gerhard Kirchner, Mar 22 2022
STATUS
approved