login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351745
Expansion of e.g.f. cos(x) * exp(exp(x) - 1).
1
1, 1, 1, 2, 4, 7, 7, -47, -549, -4284, -30756, -218315, -1571731, -11603343, -88284675, -693810426, -5636074516, -47324368509, -410556832893, -3677474325071, -33983530496537, -323712524813480, -3175734966375132, -32058728131612719, -332733970940411623, -3547642104951509087
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n,2*k) * Bell(n-2*k).
MATHEMATICA
nmax = 25; CoefficientList[Series[Cos[x] Exp[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^k Binomial[n, 2 k] BellB[n - 2 k], {k, 0, Floor[n/2]}], {n, 0, 25}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(cos(x)*exp(exp(x) - 1))) \\ Michel Marcus, Apr 09 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 07 2022
STATUS
approved