login
Table T(n,k) read by rows: number of partitions of n into k parts of size 1, 5, 10 or 25.
4

%I #29 May 16 2022 04:58:50

%S 1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,

%T 0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,1,0,0,0,1,0,0,

%U 1,1,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0,0,1,0,0,0,1

%N Table T(n,k) read by rows: number of partitions of n into k parts of size 1, 5, 10 or 25.

%C Multiset transform of the binary sequence b(n)=1,1,0,0,0,1,0,0,0,0,1,0,... with g.f. 1 + x + x^5 + x^10 + x^25, where b(.) is the Inverse Euler Transform of A001299.

%H Alois P. Heinz, <a href="/A351725/b351725.txt">Rows n = 0..360, flattened</a>

%H <a href="/index/Mag#change">Index entries for sequences related to making change</a>.

%F T(n,0) = 0 if k>0.

%F T(n,n) = 1.

%F Sum_{k=0..n} k * T(n,k) = A351740(n). - _Alois P. Heinz_, Feb 17 2022

%e T(30,6)=2 counts the partitions 5+5+5+5+5+5 = 1+1+1+1+1+25.

%e The triangle starts at row n=0 and has columns k=0..n:

%e 1

%e 0 1

%e 0 0 1

%e 0 0 0 1

%e 0 0 0 0 1

%e 0 1 0 0 0 1

%e 0 0 1 0 0 0 1

%e 0 0 0 1 0 0 0 1

%e 0 0 0 0 1 0 0 0 1

%e 0 0 0 0 0 1 0 0 0 1

%e 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%e 0 0 1 1 1 1 2 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1

%p b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n, b(n, i-1)+

%p (p-> `if`(p>n, 0, expand(x*b(n-p, i))))([1, 5, 10, 25][i]))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 4)):

%p seq(T(n), n=0..15); # _Alois P. Heinz_, Feb 17 2022

%t b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n, b[n, i - 1] +

%t Function[p, If[p > n, 0, Expand[x*b[n-p, i]]]][{1, 5, 10, 25}[[i]]]];

%t T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 4]];

%t Table[T[n], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, May 16 2022, after _Alois P. Heinz_ *)

%Y Cf. A001299 (row sums), A351740.

%Y Column k=0 gives A000007.

%Y Main diagonal gives A000012.

%Y T(2n,n) gives A351742.

%K nonn,easy,look,tabl

%O 0,472

%A _R. J. Mathar_, Feb 17 2022