login
A351636
Primes p such that if q and r are the next two primes, 6*q-r, 6*q-p, 6*q+p and 6*q+r are all prime.
1
5, 7, 79, 347, 449, 4703, 8923, 10567, 12041, 14221, 18223, 27281, 29959, 30677, 31153, 41023, 42139, 47737, 48757, 53093, 55441, 61603, 72701, 73999, 75269, 79907, 90833, 98347, 100019, 108571, 117563, 132589, 132623, 134077, 136067, 157721, 161561, 185071, 185567, 189437, 241601, 246661, 249311
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 79 is a term because the next two primes are 83 and 89, and 6*83-89 = 409, 6*83-79 = 419, 6*83+79 = 577 and 6*83+89 = 587 are all prime.
MAPLE
R:=NULL: count:= 0:
q:= 2: r:= 3:
while count < 100 do
p:= q; q:= r; r:= nextprime(r);
if andmap(isprime, [6*q+p, 6*q-p, 6*q+r, 6*q-r]) then
count:= count+1; R:= R, p;
fi
od:
R;
CROSSREFS
Sequence in context: A141746 A067198 A340468 * A062583 A196139 A165784
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Feb 15 2022
STATUS
approved