OFFSET
0,3
COMMENTS
See A351322 for algorithm.
This is the Hadamard sum of the following 4 sequences: 0, 0,0,0, 158208,.. (tilings which have both vertical and horizontal faults), 0,0,480,6144, 125952 ... (tilings which have horizontal faults but no vertical faults), 00,0,0,112192,.. (tilings which have vertical but no horizontal faults), 1, 0,40, 16512, 1399008 ,... (tilings which have neither horizontal nor vertical faults). - R. J. Mathar, Dec 08 2022
FORMULA
G.f.: (1 - 22*x - 1831*x^2 - 29454*x^3 - 270630*x^4 - 2070388*x^5 - 12125943*x^6 - 48147976*x^7 - 151548064*x^8 - 417242784*x^9 - 423562924*x^10 + 586224672*x^11 + 915719344*x^12 + 349980800*x^13 + 371621248*x^14 - 6541312*x^15 - 9691136*x^16 + 589824*x^17)/(1 - 22*x - 2351*x^2 - 40670*x^3 - 345038*x^4 - 3522884*x^5 - 28528327*x^6 - 145350120*x^7 - 623982088*x^8 - 2110011040*x^9 - 1354478796*x^10 + 9281598624*x^11 + 15001687984*x^12 + 3456230016*x^13 - 3194643904*x^14 - 1637793792*x^15 - 575934464*x^16 + 65175552*x^17).
a(n) = 22*a(n-1) + 2351*a(n-2) + 40670*a(n-3) + 345038*a(n-4) + 3522884*a(n-5) + 28528327*a(n-6) + 145350120*a(n-7) + 623982088*a(n-8) + 2110011040*a(n-9) + 1354478796*a(n-10) - 9281598624*a(n-11) - 15001687984*a(n-12) - 3456230016*a(n-13) + 3194643904*a(n-14) + 1637793792*a(n-15) + 575934464*a(n-16) - 65175552*a(n-17) for n>16.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gerhard Kirchner, Feb 21 2022
STATUS
approved