login
A350698
Consider the positive squares summing to n as obtained by the greedy algorithm; a(n) is the least of these squares.
1
1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 4, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 25, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 4, 1, 64, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 4, 1, 1, 16, 81, 1, 1, 1
OFFSET
1,4
FORMULA
a(n^2) = n^2.
a(n) = A350674(n, A053610(n)).
EXAMPLE
For n = 13:
- 13 = 3^2 + 2^2,
- so a(13) = 2^2.
PROG
(PARI) a(n, e=2) = { my (r=0); while (n, r=sqrtnint(n, e); n-=r^e); r^e }
CROSSREFS
Sequence in context: A364360 A085731 A131301 * A335324 A366245 A083730
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Jan 12 2022
STATUS
approved