login
A350561
a(n) is the number of ways of making n moves in English Peg Solitaire.
2
1, 4, 12, 60, 400, 2960, 24600, 221072, 2076744, 20123080, 197757768, 1937125160, 18687793880, 175793675328, 1594744777464, 13794351556920, 112576101214496, 857945953884624, 6037935953538456, 38729529837059648, 222984258240522544, 1133096911619304064, 4985812137371331624
OFFSET
0,2
COMMENTS
This sequence has 32 terms in total.
EXAMPLE
Given the positions marked thus:
a b c
d e f
g h i j k l m
n o p q r s t
u v w x y z 0
1 2 3
4 5 6
there are 12 ways to make two moves, viz.,
(1) e jumps over j, then h jumps over i;
(2) e jumps over j, then x jumps over q;
(3) e jumps over j, then l jumps over k;
(4) o jumps over p, then d jumps over i;
(5) o jumps over p, then 1 jumps over w;
(6) o jumps over p, then r jumps over q;
(7) 2 jumps over x, then j jumps over q;
(8) 2 jumps over x, then v jumps over w;
(9) 2 jumps over x, then z jumps over y;
(10) s jumps over r, then f jumps over k;
(11) s jumps over r, then p jumps over q;
(12) s jumps over r, then 3 jumps over y.
CROSSREFS
Sequence in context: A337291 A324693 A276707 * A083484 A088860 A097250
KEYWORD
nonn,fini
AUTHOR
Douglas Boffey, Jan 28 2022
STATUS
approved