login
E.g.f.: 1 / (1 - Sum_{k>=1} x^prime(k) / prime(k)).
1

%I #4 Sep 20 2021 08:51:42

%S 1,0,1,2,6,64,170,2988,14616,180192,1934712,21673200,300266736,

%T 4220710272,61785461712,1003589762784,17448621367680,327598207658496,

%U 6279739240655232,134169095009652480,2817563310900129024,64570676279407718400,1547773850801172960000,38824156236466815920640

%N E.g.f.: 1 / (1 - Sum_{k>=1} x^prime(k) / prime(k)).

%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * A010051(k) * a(n-k).

%t nmax = 23; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/Prime[k], {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! Boole[PrimeQ[k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]

%Y Cf. A007840, A010051, A023360, A218002, A347948.

%K nonn

%O 0,4

%A _Ilya Gutkovskiy_, Sep 20 2021