login
A347809
Expansion of (theta_3(x) - 1)^6 / (32 * (3 - theta_3(x))).
4
1, 1, 1, 7, 8, 9, 25, 32, 46, 76, 102, 165, 233, 317, 488, 690, 971, 1395, 1991, 2850, 4024, 5721, 8144, 11550, 16396, 23225, 32987, 46814, 66315, 94069, 133415, 189148, 268181, 380227, 539114, 764387, 1083692, 1536369, 2178299, 3088302, 4378362, 6207477
OFFSET
6,4
COMMENTS
Number of compositions (ordered partitions) of n into 6 or more squares.
FORMULA
a(n) = Sum_{k=6..n} A337165(n,k). - Alois P. Heinz, Sep 14 2021
MAPLE
b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), add((
s->`if`(s>n, 0, b(n-s, max(0, t-1))))(j^2), j=1..isqrt(n)))
end:
a:= n-> b(n, 6):
seq(a(n), n=6..47); # Alois P. Heinz, Sep 14 2021
MATHEMATICA
nmax = 47; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^6/(32 (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x] // Drop[#, 6] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 14 2021
STATUS
approved