login
A347513
Number of minimal dominating sets in the n-cycle complement graph.
0
1, 4, 5, 11, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430
OFFSET
3,2
LINKS
Eric Weisstein's World of Mathematics, Cycle Complement Graph
Eric Weisstein's World of Mathematics, Minimal Dominating Set
FORMULA
a(n) = A000096(n-3) = n*(n-3)/2 for n > 6.
G.f.: x^3*(-1 - x + 4*x^2 - 7*x^3 + 8*x^4 - 6*x^5 + 2*x^6))/(-1 + x)^3.
CROSSREFS
Cf. A000096.
Sequence in context: A118423 A084812 A050018 * A125577 A053307 A076065
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 04 2021
STATUS
approved