login
A346993
Record numbers of grid points in a square lattice covered by a continuously growing circular disk if the center of the disk is chosen to cover the maximum possible number of grid points.
8
1, 2, 4, 5, 6, 7, 9, 12, 13, 14, 16, 17, 21, 22, 24, 26, 27, 28, 32, 33, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 52, 56, 57, 58, 59, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 104, 112, 113
OFFSET
1,2
EXAMPLE
Diameter Covered R^2 =
of disk grid (D/2)^2 =
n D points A346994(n)/A346995(n)
.
1 0.00000 1 0 / 1
2 1.00000 2 1 / 4
3 1.41421 4 1 / 2
4 2.00000 5 1 / 1
5 2.23607 6 5 / 4
6 2.50000 7 25 / 16
7 2.82843 9 2 / 1
8 3.16228 12 5 / 2
9 3.67696 13 169 / 50
10 3.80058 14 65 / 18
11 4.12311 16 17 / 4
12 4.33333 17 169 / 36
13 4.47214 21 5 / 1
CROSSREFS
The corresponding squared radii are A346994/A346995.
Sequence in context: A138620 A260820 A248554 * A098166 A217445 A007238
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 16 2021
STATUS
approved