login
A345370
a(n) is the number of distinct numbers of diagonal transversals that a diagonal Latin square of order n can have.
8
1, 0, 0, 1, 2, 2, 14, 47, 182
OFFSET
1,5
COMMENTS
a(n) <= A287648(n) - A287647(n) + 1.
a(n) <= A287764(n).
Conjecture: a(12) = A287648(12) - A287647(12) + 1. - Natalia Makarova, Oct 26 2021
a(10) >= 736, a(11) >= 1242, a(12) >= 17693, a(13) >= 18241, a(14) >= 294053, a(15) >= 1958394, a(16) >= 13715. - Eduard I. Vatutin, Oct 29 2021, updated Dec 13 2023
LINKS
Eduard I. Vatutin, Proving lists (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13).
E. I. Vatutin, Distributed diagonalization strategy for Latin squares, Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2023. pp. 309-311. (in Russian)
E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, I. I. Kurochkin, A. M. Albertyan, A. V. Kripachev, A. I. Pykhtin, Methods for getting spectra of fast computable numerical characteristics of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 19-23. (in Russian)
E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, Heuristic method for getting approximations of spectra of numerical characteristics for diagonal Latin squares, Intellectual information systems: trends, problems, prospects, Kursk, 2022. pp. 35-41. (in Russian)
EXAMPLE
For n=7 the number of diagonal transversals that a diagonal Latin square of order 7 may have is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, or 27. Since there are 14 distinct values, a(7)=14.
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Jun 16 2021
EXTENSIONS
a(8) added by Eduard I. Vatutin, Jul 15 2021
a(9) added by Eduard I. Vatutin, Oct 20 2022
STATUS
approved