login
A345080
First occurrence of n in A345079, or -1 if n does not occur in A345079.
2
2, 4, 1, 105, 330, 385, 770, 1365, 1995, 1785, 3570, 5610, 2805, 6279, 3135, 14245, 13209, 6545, 7917, 12903, 17017, 21385, 22715, 11165, 22015, 21505, 29393, 20930, 10465, 16555, 31395, 19285, 38570, 37961, 35581, 52535, 35105, 75361, 18445, 35245, 23205, 46345
OFFSET
0,1
COMMENTS
Records: 2, 4, 105, 330, 385, 770, 1365, 1995, 3570, 5610, 6279, 14245, 17017, 21385, 22715, 29393, 31395, 38570, 52535, 75361, 84630, 115710, ...
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..72
EXAMPLE
A345079(105) = 3. For all k < 105, -1, 0 and 1 are the only possible coefficients in the expansion of the k-th cyclotomic polynomial, so A345079(k) <= 2. Therefore, a(3) = 105.
MATHEMATICA
f[n_] := Block[{a = Union[ CoefficientList[ Cyclotomic[n, x], x]]}, a[[-1]] - a[[1]]]; t[_] := 0; k = 1; While[k < 100001, b = f@k; If[t[b] == 0, t[b] = k]; k++]; t@# & /@ Range[0, 115]
PROG
(PARI) a(n) = my(k=1); while(A345079(k)!=n, k++); k \\ See program for A345079, assuming every number occurs in A345079
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved