login
A344464
a(n) = Sum_{d|n} d^p(d), where p is the number of partitions of n.
0
1, 5, 28, 1029, 78126, 362797088, 4747561509944, 73786976294838207493, 42391158275216203514294433229, 1000000000000000000000000000000000000078130, 20796505671840591460586660430317517562942313712635618374562
OFFSET
1,2
EXAMPLE
a(4) = Sum_{d|4} d^p(d) = 1^1 + 2^2 + 4^5 = 1029.
MATHEMATICA
Table[Sum[k^PartitionsP[k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 12}]
CROSSREFS
Cf. A000041 (partitions of n).
Sequence in context: A359649 A346312 A359739 * A348393 A057642 A125137
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 19 2021
STATUS
approved