login
Number of nonisomorphic unfoldings of the n-th Johnson solid.
2

%I #7 Apr 11 2021 07:53:21

%S 8,15,308,3030,29757,7825005,63,448,3116,3421,40321,9,99,156,2010,

%T 25574,13041,268260,28427091,2982139245,822310337549,6193152,

%U 1935360000,599660087082,170242287969600,152,27195,1867560,1934427,125939163,132627603,74520844992

%N Number of nonisomorphic unfoldings of the n-th Johnson solid.

%C Unfoldings with overlaps are allowed.

%C Terms are taken from the paper by Horiyama and Shoji.

%H Pontus von Brömssen, <a href="/A343210/b343210.txt">Table of n, a(n) for n = 1..92</a>

%H Takashi Horiyama and Wataru Shoji, <a href="https://www.ibr.cs.tu-bs.de/alg/eurocg13/booklet_eurocg13.pdf">The number of different unfoldings of polyhedra</a>, The 29th European Workshop on Computational Geometry, Technische Universität Braunschweig 2013, 143-146. [Apparently, two pairs of Johnson solids have switched numbers in Table 2, namely J32 <-> J33 and J40 <-> J41.]

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_Johnson_solids">List of Johnson solids</a>

%e The gyrobifastigium (J26) has a(26) = 152 nonisomorphic unfoldings.

%Y Cf. A242731, A343209.

%K nonn,fini,full

%O 1,1

%A _Pontus von Brömssen_, Apr 08 2021