login
A342856
Factorial numbers n that are sqrt(n)-smooth.
0
1, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
OFFSET
1,2
COMMENTS
According to A007917, the largest prime factor of n! is the largest prime <= n. Because the factorials grow much faster than the squares, this sequence contains the factorial numbers except 2 and 6. - R. J. Mathar, Apr 07 2021
FORMULA
Intersection of A000142 and A048098.
E.g.f.: x*(5*x^3-13*x^2+9*x+1)/(1-x)^3. - Alois P. Heinz, Mar 25 2021
MATHEMATICA
sqrtSmoothQ[n_] := FactorInteger[n][[-1, 1]] <= Sqrt[n];
Select[Range[25]!, sqrtSmoothQ]
PROG
(PARI) first(n) = concat(1, vector(n-1, i, (i+3)!)) \\ David A. Corneth, Apr 07 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved