login
A342345
a(1) = 3, a(n) = smallest palindromic nontrivial multiple of a(n-1) containing all decimal digits of a(n-1).
1
3, 33, 363, 36663, 6306036, 63066666036, 6304963866683694036, 6304963866689998999866683694036
OFFSET
1,1
COMMENTS
Differs from A082778 at a(5). a(n) <= (10^A055642(a(n-1))+1)*a(n-1). If a(n-1) > 10 and the last digit of a(n-1) <= 4, then a(n) <= (10^(A055642(a(n-1))-1)+1)*a(n-1).
EXAMPLE
a(4) = 3663 is a palindromic multiple of a(3) = 363 and contains 2 '3' and 1 '6', all the digits of a(3).
CROSSREFS
Sequence in context: A075835 A077698 A080488 * A082778 A228002 A163476
KEYWORD
nonn,base,more
AUTHOR
Chai Wah Wu, Mar 08 2021
EXTENSIONS
a(8) from Martin Ehrenstein, Mar 10 2021
STATUS
approved