login
A342302
Numbers k such that A001414(k), k+A001414(k) and 2*k+A001414(k) are prime.
2
6, 12, 48, 90, 252, 294, 300, 420, 432, 720, 798, 864, 930, 1020, 1140, 1218, 1368, 1428, 1602, 1716, 1890, 1938, 2088, 2184, 2190, 2196, 2250, 2760, 2880, 3588, 3660, 3708, 3774, 3810, 4452, 4710, 4902, 5280, 5340, 5412, 5754, 5850, 6174, 6240, 6462, 6768, 7014, 7182, 7632, 8322, 8820, 9144
OFFSET
1,1
COMMENTS
Numbers k such that A343016(k) >= 3.
All terms are divisible by 6.
LINKS
EXAMPLE
a(3) = 48 = 2^4*3 is a term because A001414(48) = 4*2+3 = 11 and 11, 48+11 = 59 and 2*48+11 = 107 are prime.
MAPLE
filter:= proc(n) local s, t;
s:= add(t[1]*t[2], t=ifactors(n)[2]);
isprime(s) and isprime(n+s) and isprime(2*n+s)
end proc;
select(filter, [seq(i, i=6..10000, 6)]);
CROSSREFS
Sequence in context: A052904 A106692 A032470 * A018809 A226882 A214903
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Apr 02 2021
STATUS
approved