login
A340925
16*a(n) is the maximum possible determinant of a 5 X 5 matrix whose entries are 25 consecutive primes starting with prime(n).
3
445934520, 527275650, 606375810, 668638620, 732258072, 860414368, 995563032, 1132837302, 1249798972, 1453587865, 1598993079, 1789976248, 2008319824, 2181193410, 2363922414, 2592209412, 2782039915, 3035727819, 3255326094, 3421333460, 3453338250, 3663999760, 4056944944
OFFSET
2,1
COMMENTS
The entries of the matrix are arranged in such a way that the determinant of the matrix is maximized.
The special case of the first matrix with determinant A180128(5) = 5725998504 is excluded, since the prime number 2 prevents the otherwise existing divisibility of the determinant by 16.
EXAMPLE
a(2) = 445934520: determinant(
[73 53 3 79 23]
[37 101 43 5 47]
[19 41 89 71 13]
[11 31 29 61 97]
[83 7 67 17 59]) = 7134952320 = 16*445934520.
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jan 26 2021
STATUS
approved