login
A340752
a(n) is the least prime p such that there is at least one prime <= p in each congruence class mod prime(n).
3
3, 7, 19, 29, 43, 103, 103, 191, 137, 317, 311, 439, 379, 463, 967, 607, 709, 1061, 1013, 829, 1021, 1319, 1201, 1493, 1499, 2143, 1973, 2459, 2333, 2203, 3697, 3089, 3923, 2909, 3449, 4517, 3539, 4451, 3923, 4801, 4007, 4799, 4793, 3727, 5651, 4349, 5591, 4793, 6581, 8059, 6043, 9769, 5507, 6997
OFFSET
1,1
COMMENTS
a(n) is the maximum of row n of A340753.
LINKS
EXAMPLE
a(3) = 19 because with prime(3)=5, the first primes in each congruence class are 5 == 0 (mod 5), 11 == 1 (mod 5), 2 == 2 (mod 5), 3 == 3 (mod 5), and 19 == 4 (mod 5), and the maximum of these is 19.
MAPLE
g:= proc(p) local S, q;
S:= {$0..p-1};
q:= 1;
while S <> {} do
q:= nextprime(q);
S:= S minus {q mod p};
od;
q
end proc:
seq(g(ithprime(i)), i=1..100);
CROSSREFS
Cf. A340753.
Sequence in context: A239219 A056725 A091738 * A360228 A358238 A136054
KEYWORD
nonn
AUTHOR
Robert Israel, Jan 19 2021
STATUS
approved