login
A339590
Irregular triangle read by rows: T(n,k) (n>=2, k>=1) = number of strong tournaments on n nodes with k descents.
3
0, 1, 1, 1, 6, 10, 6, 1, 1, 13, 56, 123, 158, 123, 56, 13, 1, 1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1, 1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1
OFFSET
2,5
REFERENCES
Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
LINKS
Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, arXiv:1909.01550 [math.CO], 20 Mar 2020.
EXAMPLE
Triangle begins:
0;
1, 1;
1, 6, 10, 6, 1;
1, 13, 56, 123, 158, 123, 56, 13, 1;
1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1;
1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1;
...
CROSSREFS
Row sums are A054946.
Sequence in context: A306368 A075368 A235117 * A074288 A156383 A247270
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 28 2020
STATUS
approved