login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339122
Number of elements of the Rubik's Cube group of order A338883(n).
2
1, 170911549183, 33894540622394, 4346957030144256, 133528172514624, 140621059298755526, 153245517148800, 294998638981939200, 55333752398428896, 34178553690432192, 44590694400, 2330232827455554048, 23298374383021440, 14385471333209856, 150731886270873600
OFFSET
1,2
COMMENTS
The most common order is 60, with a(33) = 4199961633799421952 elements, or about 9.71% of the group.
The least common order (excluding 1) is 11, with a(11) = 44590694400 elements, or about 0.0000001% of the group. Elements of order 11 are rare because they cannot affect the corner pieces of the cube.
FORMULA
Sum_{n=1..73} a(n) = 43252003274489856000 = A075152(3).
EXAMPLE
a(1) = 1 because the only element of order A338883(1) = 1 is the identity element.
a(73) = 51490480088678400 is the number of elements of order A338883(73) = 1260.
MATHEMATICA
pN[p_] := Total[p]!/Times@@p/Times@@Factorial[Flatten[Tally[p]][[2 ;; ;; 2]]]
oddQ[p_] := OddQ[Total[p - 1]]
ord[p_] := LCM @@ p
oriN[p_, o_] := Module[{i, t, a = 0, ns = 0, s = 0, r}, t = ord[p]/p;
For[i = 1, i <= Length[p], i++,
If[Mod[t[[i]], o] == 0, a += p[[i]], ns += 1; s += p[[i]]]];
{If[a == 0, r = o^(s - ns), r = o^a o^(s - ns - 1)], o^(a + s - 1) - r}]
val[p1_, o1_, p2_, o2_] :=
Module[{z}, z = pN[p1] pN[p2];
{{LCM[ord[p1], ord[p2]], z oriN[p1, o1][[1]] oriN[p2, o2][[1]]},
{{LCM[ord[p1] o1, ord[p2]], z oriN[p1, o1][[2]] oriN[p2, o2][[1]]}}, {{LCM[ord[p1], ord[p2] o2], z oriN[p1, o1][[1]] oriN[p2, o2][[2]]}},
{{LCM[ord[p1] o1, ord[p2] o2], z oriN[p1, o1][[2]] oriN[p2, o2][[2]] }}}]
p8 = IntegerPartitions[8]; p12 = IntegerPartitions[12];
ce = Select[p8, ! oddQ[#] &]; co = Select[p8, oddQ[#] &];
ee = Select[p12, ! oddQ[#] &]; eo = Select[p12, oddQ[#] &];
res = {}; max = 0;
For[i = 1, i <= Length[ce], i++,
For[j = 1, j <= Length[ee], j++,
AppendTo[res, val[ce[[i]], 3, ee[[j]], 2]]]]
For[i = 1, i <= Length[co], i++,
For[j = 1, j <= Length[eo], j++,
AppendTo[res, val[co[[i]], 3, eo[[j]], 2]]]]
p = Partition[res // Flatten, 2]; c // Clear;
For[i = 1, i <= Length[p], i++,
If [IntegerQ[c[p[[i, 1]]]], c[p[[i, 1]]] += p[[i, 2]],
c[p[[i, 1]]] = p[[i, 2]]]; If[p[[i, 1]] > max, max = p[[i, 1]]]];
Select[Table[c[i], {i, 1, max}], IntegerQ[#] &] (* Herbert Kociemba, Jun 30 2022 *)
PROG
(Python) # See post #11 in SpeedSolving Puzzles Community link.
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Ben Whitmore, Nov 24 2020
EXTENSIONS
a(10) corrected by Ben Whitmore, Jun 27 2022
STATUS
approved