OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 0. Moreover, any integer m > 1987 not congruent to 0 or 6 modulo 8 can be written as x^2 + y^2 + z^2 + w^2 with x, y, z, w nonnegative integers and x + y a positive power of 4.
We have verified the latter version of the conjecture for m up to 3*10^7.
By Theorem 1.1(ii) of the author's IJNT paper, any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x, y, z, w nonnegative integers and x - y a power of two (including 2^0 = 1).
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
Zhi-Wei Sun, Sums of four squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020.
EXAMPLE
a(1) = 1, and 2*1 + 1 = 1^2 + 1^2 + 0^2 + 1^2 with 1 + 1 = 2^1.
a(2) = 1, and 2*2 + 1 = 0^2 + 2^2 + 0^2 + 1^2 with 0 + 2 = 2^1.
a(3) = 1, and 2*3 + 1 = 1^2 + 1^2 + 1^2 + 2^2 with 1 + 1 = 2^1.
a(11) = 1, and 2*11 + 1 = 1^2 + 3^2 + 2^2 + 3^2 with 1 + 3 = 2^2.
a(15) = 1, and 2*15 + 1 = 1^2 + 1^2 + 2^2 + 5^2 with 1 + 1 = 2^1.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
PQ[n_]:=PQ[n]=n>1&&IntegerQ[Log[2, n]];
tab={}; Do[r=0; Do[If[SQ[2n+1-x^2-y^2-z^2]&&PQ[x+y], r=r+1], {x, 0, Sqrt[(2n+1)/2]}, {y, x, Sqrt[2n+1-x^2]}, {z, Boole[x+y==0], Sqrt[(2n+1-x^2-y^2)/2]}];
tab=Append[tab, r], {n, 1, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 09 2020
STATUS
approved