login
A337925
Digits of n rearranged to be the smallest number with the fewest possible prime factors, counted with multiplicity. Terms retain the same number of digits as n, i.e. leading digits may not be zero.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 13, 41, 15, 61, 17, 18, 19, 20, 21, 22, 23, 42, 25, 26, 27, 82, 29, 30, 13, 23, 33, 43, 53, 63, 37, 83, 39, 40, 41, 42, 43, 44, 45, 46, 47, 84, 49, 50, 15, 25, 53, 45, 55, 65, 57, 58, 59, 60, 61, 26, 63, 46, 65, 66, 67, 86, 69, 70, 17, 27, 37, 47, 57, 67, 77
OFFSET
1,2
LINKS
FORMULA
a(a(n)) = a(n). - Rémy Sigrist, Oct 22 2020
MATHEMATICA
a[n_] := Module[{p = FromDigits /@ Select[Permutations @ IntegerDigits[n], First[#] > 0 &]}, o = PrimeOmega[p]; Min[p[[Position[o, Min[o]] // Flatten]]]]; Array[a, 100] (* Amiram Eldar, Oct 19 2020 *)
PROG
(PARI) a(n) = {my(d = digits(n), v = select(x->#(digits(x))==#d, vector((#d)!, i, fromdigits(vector(#d, k, d[numtoperm(#d, i-1)[k]])))), b = vecmin(vector(#v, k, bigomega(v[k])))); vecmin(select(x->(bigomega(x)==b), v)); } \\ Michel Marcus, Oct 19 2020
CROSSREFS
KEYWORD
nonn,look,base
AUTHOR
Roderick Kimball, Sep 30 2020
STATUS
approved